Overview of VideoCLEF 2009: New Perspectives on Speech-based Multimedia Content Enrichment
نویسندگان
چکیده
VideoCLEF 2009 offered three tasks related to enriching video content for improved multimedia access in a multilingual environment. For each task, video data (Dutch-language television, predominantly documentaries) accompanied by speech recognition transcripts were provided. The Subject Classification Task involved automatic tagging of videos with subject theme labels. The best performance was achieved by approaching subject tagging as an information retrieval task and using both speech recognition transcripts and archival metadata. Alternatively, classifiers were trained using either the training data provided or data collected from Wikipedia or via general Web search. The Affect Task involved detecting narrative peaks, defined as points where viewers perceive heightened dramatic tension. The task was carried out on the “Beeldenstorm” collection containing 45 short-form documentaries on the visual arts. The best runs exploited affective vocabulary and audience directed speech. Other approaches included using topic changes, elevated speaking pitch, increased speaking intensity and radical visual changes. The Linking Task, also called “Finding Related Resources Across Languages,” involved linking video to material on the same subject in a different language. Participants were provided with a list of multimedia anchors (short video segments) in the Dutch-language “Beeldenstorm” collection and were expected to return target pages drawn from English-language Wikipedia. The best performing methods used the transcript of the speech spoken during the multimedia anchor to build a query to search an index of the Dutchlanguage Wikipedia. The Dutch Wikipedia pages returned were used to identify related English pages. Participants also experimented with pseudo-relevance feedback, query translation and methods that targeted proper names.
منابع مشابه
Overview of VideoCLEF 2008: Automatic Generation of Topic-based Feeds for Dual Language Audio-Visual Content
The VideoCLEF track, introduced in 2008, aims to develop and evaluate tasks related to analysis of and access to multilingual multimedia content. In its first year, VideoCLEF piloted the Vid2RSS task, whose main subtask was the classification of dual language video (Dutchlanguage television content featuring English-speaking experts and studio guests). The task offered two additional discretion...
متن کاملClassification of Dual Language Audio-Visual Content: Introduction to the VideoCLEF 2008 Pilot Benchmark Evaluation Task
VideoCLEF is a new track for the CLEF 2008 campaign. This track aims to develop and evaluate tasks in analyzing multilingual video content. A pilot of a Vid2RSS task involving assigning thematic class labels to video kicks off the VideoCLEF track in 2008. Task participants deliver classification results in the form of a series of feeds, one for each thematic class. The data for the task are dua...
متن کاملDCU at VideoClef
We describe a baseline system for the VideoCLEF Vid2RSS task in which videos are to be classified into thematic categories based on their content. The system uses an off-the-shelf Information Retrieval system. Speech transcripts generated using automated speech recognition are indexed using default stemming and stopping methods. The categories are populated by using the category theme (or label...
متن کاملSearch and Hyperlinking Task at MediaEval 2012
The Search and Hyperlinking Task was one of the Brave New Tasks at MediaEval 2012. The Task consisted of two subtasks which focused on search and linking in retrieval from a collection of semi-professional video content. These tasks followed up on research carried out within the MediaEval 2011 Rich Speech Retrieval (RSR) Task and the VideoCLEF 2009 Linking Task.
متن کاملDCU at VideoCLEF 2009
DCU participated in the VideoCLEF 2009 Linking Task. Our approach was based on identifying relevant related content using the Lemur information retrieval toolkit. We implemented two distinctive variants of our approach. One version performs the search in the Dutch Wikipedia with the exact words (either stemmed or not) of the search query extracted from the ASR transcription, and returns the cor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009